Eigenschaften von Funktionen

Stetigkeit. Differenzierbarkeit. Integrierbarkeit.

Eine Funktion ff ist

  • surjektiv, wenn jedes Element des Wertebereichs im Bild von ff liegt.
  • injektiv, wenn jedes Element im Bild von ff genau ein Urbild hat. Also wenn keine zwei Elemente im Definitionsbereich das gleiche Bild haben.

Strukturerhaltung

Für algebraische Strukturen sind besonders die strukturerhaltenden Abbildungen zwischen ihnen interessant.

Lineare Abbildungen zwischen Vektorräumen sind strukturerhaltend in dem Sinne, dass sie sich mit der Addition und Skalarmultiplikation des Vektorraums vertragen, d.h. Linearkombinationen wieder auf Linearkombinationen abbilden. Genauer gesagt ist eine Funktion ff linear, wenn gilt:

  • f(x+x)=f(x)+f(x)f(x+x')=f(x)+f(x')
  • f(cx)=cf(x)f(cx)=cf(x)

Sie kann dann durch eine eindeutige Matrix AA beschrieben werden, so dass t(f(x))=Atx{}^t(f(x))=A{\,}^tx

Eine Abbildung zwischen metrischen Räumen (X,dX)(X,d_X) und (Y,dY)(Y,d_Y) ist isometrisch, wenn sie die Metrik erhält (d.h. der Abstand zweier Bildpunkte ist gleich dem Abstand ihrer Urbildpunkte): dY(f(x),f(y))=dX(x,y)fu¨r alle x,yXd_Y(f(x),f(y)) = d_X(x,y) \quad\text{für alle }x,y\in X Jede isometrische Abbildung ist stetig (sogar gleichmäßig stetig).

Stetigkeit ist eine Art der Strukturerhaltung: Sie erhält die Nähe zwischen Elementen in topologischen Räumen.

Stetigkeit

Die Stetigkeit einer Funktion in einem Punkt ist eine lokale Eigenschaft, d.h. sie hängt nur vom Verhalten der Funktion in einer Umgebung des Punktes ab.

Abbildungen zwischen topologischen Räumen

Wir betrachten Abbildungen f:XYf:X\to Y zwischen topologischen Räumen XX und YY .

Topologisch bedeutet Stetigkeit einer Funktion, dass sie die Nähe zwischen Elementen erhält, also im Sinne der Topologie strukturerhaltend ist. Das kann mithilfe von Umgebungen definiert werden.

Stetigkeit vererbt auch andere Eigenschaften; wenn z.B. die Urbildmenge einer stetigen Abbildung kompakt oder zusammenhängend ist, so ist es die Bildmenge auch.

Umgebungskriterium

f:MYf:M\to Y ist stetig im Punkt pMp\in M genau dann, wenn gilt: Zu jeder Umgebung VV von f(p)f(p) gibt es eine Umgebung UU von pp , so dass f(UM)Vf(U\cap M)\subseteq V (d.h. für alle xUMx\in U\cap M gilt, dass f(x)Vf(x)\in V ).

Anders ausgedrückt ist ff genau dann stetig in pMp\in M , wenn für jede Umgebung VV von f(p)f(p) die Menge f1(V)f^{-1}(V) eine Umgebung von pp ist.

f:MYf:M\to Y ist stetig genau dann, wenn gilt: Für alle offenen Mengen UU ist f1(U)f^{-1}(U) offen in M. (Die Urbilder offener Mengen sind offen. Das gilt analog auch für abgeschlossene Mengen.)

Abbildungen zwischen metrischen Räumen

Wir betrachten Abbildungen f:XYf:X\to Y zwischen metrischen Räumen (X,dX)(X,d_X) und (Y,dY)(Y,d_Y) (oder auch zwischen normierten Räumen (X,X)(X,\|\cdot\|_X) und (Y,Y)(Y,\|\cdot\|_Y) mit d(a,b)=abd(a,b)=\|a-b\| ).

Folgenkriterium

ff ist stetig in pp , wenn für jede Folge (xn)(x_n) in XX mit limnxn=p\lim_{n\to\infty} x_n = p gilt: limnf(xn)=f(limnxn)=f(p)\lim_{n\to\infty} f(x_n) = f(\lim_{n\to\infty} x_n) = f(p)

εδ\varepsilon-\delta -Kriterium

Hinreichend kleine Änderungen des Arguments ziehen nur beliebig kleine Änderungen des Funktionswertes nach sich.

ff ist stetig in pp , wenn es für alle ε>0\varepsilon > 0 ein δ>0\delta > 0 gibt, so dass für alle xXx\in X gilt: dX(x,p)<δdY(f(x),f(p))<εd_X(x,p) < \delta \Rightarrow d_Y(f(x),f(p)) < \varepsilon

Das garantiert Approximierbarkeit der Funktion: Für jeden maximalen Fehler ε\varepsilon und eine Stelle pp findet man ein δ\delta , so dass sich jeder Funktionswert f(x)f(x) für Argumente xx in der Umgebung Uδ(p)U_\delta(p) um maximal ε\varepsilon von f(p)f(p) unterscheiden.

Stärkere Arten von Stetigkeit

Gleichmäßige Stetigkeit

ff ist gleichmäßig stetig, wenn es für alle ε>0\varepsilon > 0 ein δ>0\delta > 0 gibt, so dass für alle x,yXx,y\in X gilt: dX(x,y)<δdY(f(x),f(y))<εd_X(x,y) < \delta \Rightarrow d_Y(f(x),f(y)) < \varepsilon

δ\delta ist also global und hängt nicht mehr von der Stelle der Funktion ab. Das entspricht einer gleichmäßigen Approximierbarkeit.

Non-uniform approximation Uniform approximation

(Links: Stetigkeit, rechts: gleichmäßige Stetigkeit. Quelle: Serlo)

Lipschitz-Stetigkeit

ff ist Lipschitz-stetig mit Lipschitz-Konstante LL (oder dehnungsbeschränkt), wenn für alle p,qXp,q\in X gilt: dY(f(p),f(q))LdX(p,q)d_Y(f(p),f(q)) \leq L\cdot d_X(p,q) (f(p)f(q))YLpqX\|(f(p)-f(q))\|_Y \leq L\cdot \|p-q\|_X

Das heißt, der Abstand zweier Punkte x,xx,x' wird durch Anwendung der Funktion höchstens um den Faktor LL gestreckt (wenn L>1L > 1 ) oder gestaucht (wenn L<1L<1 ).

Hölder-Stetigkeit

ff ist Hölder-stetig zum Exponenten α(0,)\alpha\in(0,\infty) , wenn es eine Konstante C>0C>0 gibt, so dass für alle p,qXp,q\in X gilt: dY(f(p),f(q))CdX(p,q)αd_Y(f(p),f(q)) \leq C\cdot d_X(p,q)^\alpha (f(p)f(q))YCpqXα\|(f(p)-f(q))\|_Y \leq C\cdot \|p-q\|_X^\alpha

Die Stetigskeitsbegriffe lassen sich ihrer Stärke nach ordnen:

Hölder-stetig \Rightarrow Lipschitz-stetig \Rightarrow gleichmäßig stetig \Rightarrow stetig

Die Umkehrungen gelten im allgemeinen nicht, zum Beispiel ist f(x)=x2f(x)=x^2 stetig, aber nicht gleichmäßig stetig.

Wichtige Sätze

Ist MM kompakt und f:MYf:M\to Y stetig, dann ist f(M)f(M) kompakt und ff gleichmäßig stetig.

Ist MM zusammenhängend und f:MYf:M\to Y stetig, dann ist f(M)f(M) zusammenhängend.

Fortsetzbarkeit

In einem Punkt aa stetig fortsetzbar? Wenn aa kein Häufungspunkt, dann immer. Wenn aa Häufungspunkt, dann nur wenn ff in aa konvergiert.

Differenzierbarkeit

Die Ableitung einer Funktion untersucht deren lokale Veränderung: Wie stark ändert sich der Funktionswert bei einer Veränderung des Eingabewerts? Das kann man verstehen als Änderungsrate der Funktion an einer Stelle. Wobei die Änderungsrate die Steigung derjenigen linearen Funktion ist, die die Änderung der betrachteten Funktion in dem gegebenen Punkt lokal am besten approximiert. Eine Funktion ist also differenzierbar, wenn sie linear approximiert werden kann. (Wobei linear hier bedeutet, dass die Funktion ein Polynom vom Grad 1\leq 1 ist.)

Das Differential wird in der Regel über normierten Räumen betrachtet, die neben einer metrischen Strukur auch eine lineare Strukur haben. In allgemeinen metrischen Räumen ist eine lineare Approximation nicht immer möglich. (Da kann man aber über isometrische Näherungen ein metrisches Differential definieren. Aber für Anwendungen sind sowieso Funktionen über euklidischen Räumen wichtig, d.h. reellwertige Funktionen mehrerer Veränderlicher von Rn\mathbb{R}^n nach R\mathbb{R} und vektorwertige Funktionen von Rn\mathbb{R}^n nach Rm\mathbb{R}^m .)

Differenzierbarkeit in einem Punkt ist eine lokale Eigenschaft, d.h. sie hängt nur vom Verhalten der Funktion in einer Umgebung des Punktes ab.

Änderungsrate

Die Ableitung ist der Proportionalitätsfaktor zwischen infinitesimalen Änderungen des Eingabewertes und daraus resultierenden infinitesimalen Änderungen des Funktionswertes, beschreibt also die lokale Änderungsrate der Funktion.

Der Differentialquotient (oder Differential) ist der Grenzwert des Differenzenquotienten. Der Differenzenquotient ist die mittlere Änderungsrate der Funktion auf dem Intervall [x,a][x,a] , das entspricht geometrisch der Sekantensteigung: f(x)f(a)xa\frac{f(x)-f(a)}{x-a} f(a)=limxaf(x)f(a)xaf'(a) = \text{lim}_{x\to a}\frac{f(x)-f(a)}{x-a}

Eine äquivalente Formulierung ergibt sich, wenn man xx durch a+ha+h ersetzt. Der Grenzwert der Steigung der Sekanten durch die Punkte (a,f(a))(a,f(a)) und (a+h,f(a+h))(a+h,f(a+h)) ist dann: f(a)=limh0f(a+h)f(a)hf'(a)=\text{lim}_{h\to 0}\frac{f(a+h)-f(a)}{h} Das ist äquivalent zu limh0f(a+h)f(a)L(h)h=0\text{lim}_{h\to 0}\frac{f(a+h)-f(a)-L(h)}{h}=0 Wobei L(h)=f(a)hL(h)=f'(a)\,h eine lineare Abbildung ist.

Diese Formulierung ist praktisch, da sie sich einfach auf mehrdimensionale Funktionen übertragen lässt. (Im Gegensatz zur ersten: Da bei mehrdimensionalen Funktionen xax-a und f(x)f(a)f(x)-f(a) Vektoren unterschiedlicher Räume sein können, ist der Quotient beider in vielen Fällen gar nicht vernünftig definiert.) Das Differential ist dann die Abbildung L:RnRL:\mathbb{R}^n\to\mathbb{R} , so dass

limh0f(a+h)f(a)L(h)h=0\text{lim}_{h\to 0}\frac{f(a+h)-f(a)-L(h)}{\|h\|} = 0

Daraus ergibt sich eine leicht andere Sichtweise: Die Ableitung ist die Steigung der linearen Funktion, die die Änderung der betrachteten Funktion in dem gegebenen Punkt lokal am besten approximiert. D.h. die Änderung des Funktionswerts f(x)f(x) hängt annähernd linear von der Änderung des Wertes xx (von xx zu x+hx+h ) ab. Das entspricht der Vorstellung, dass die Tangente der Graph derjenigen linearen Funktion hL(h)h\to L(h) ist, die f(a+h)f(a)f(a+h)−f(a) mit einem sehr kleinen Fehler approximiert.

Eine Funktion ist also differenzierbar in einem Punkt, wenn sie in dem Punkt “annähernd linear” ist.

Lineare Approximierbarkeit

Aus der Approximation f(a)f(x)f(a)xaf'(a)\approx\dfrac{f(x)-f(a)}{x-a} ergibt sich direkt: f(x)f(a)+f(a)(xa)f(x)\approx f(a) + f'(a)\cdot (x-a) Daher kann man Differenzierbarkeit wie folgt definieren:

f:MRmf:M\to \mathbb{R}^m ist genau dann differenzierbar in aa mit der Ableitung c=f(a)Rmc=f'(a)\in \mathbb{R}^m , wenn es eine Funktion r:MRmr:M\to \mathbb{R}^m gibt, so dass

  • f(x)=f(a)+c(xa)+r(x)f(x) = f(a) + c\cdot(x-a) + r(x)
  • limxar(x)xa=0\lim_{x\to a}\dfrac{r(x)}{x-a} = 0

Hier versteht man f(a)+c(xa)f(a) + c(x-a) als Näherung von f(x)f(x) und r(x)r(x) als Fehler, also als Differenz zwischen der eigentlichen Funktion und ihrer Näherung. Wenn x=ax=a , dann ist r(x)=0r(x)=0 .

Da r(x)=f(x)f(a)c(xa)r(x) = f(x) - f(a) - c(x-a) ist, gelten diese Bedingungen genau dann, wenn limxaf(x)f(a)c(xa)xa=limxaf(x)(a)xac=0,\lim_{x\to a}\frac{f(x) - f(a) - c(x-a)}{x-a}=\lim_{x\to a}\frac{f(x) - (a)}{x-a} - c = 0, also wenn limxaf(x)f(a)xa=c=f(a).\lim_{x\to a}\frac{f(x) - f(a)}{x-a} = c = f'(a).

Im mehrdimensionalen Fall heißt das: f:MYf:M\to Y ist genau dann differenzierbar in aa mit der Ableitung A=f(a)YA=f'(a)\in Y (die Jacobi-Matrix, siehe lineare Abbildung als Matrix), wenn es eine Funktion r:MYr:M\to Y gibt, so dass

  • f(x)=f(a)+A(xa)+r(x)f(x) = f(a) + A\cdot(x-a) + r(x)
  • limxar(x)xa=0\lim_{x\to a}\dfrac{r(x)}{\|x-a\|} = 0

Die Wahl der Norm spielt keine Rolle.

Operatoren

Differentialoperator: ddx:ff\frac{d}{dx}:f\to f'

Bei mehrdimensionalen Funktionen ist die Richtungsableitung die momentane relative Änderung des Funktionswertes f(x)f(x) , wenn sich der Wert xx mit dem Vektor hh fortbewegt. Sie beschreibt also ist das lokale Verhalten der Komponentenfunktion bei Änderung dieser Komponente. Das Differential weist im Prinzip jedem Vektor die Richtungsableitung in Richtung des Vektors zu.

Ein Spezialfall der Richtungsableitung ist die partielle Ableitung. Die partielle Ableitung einer Funktion mehrerer Veränderlicher ist nichts anderes als die Ableitung der Funktion, die man erhält, wenn man alle Veränderlichen bis auf eine festhält.

Differentialoperator: xi:ffxi\frac{\partial}{\partial x_i}:f\to \frac{\partial f}{\partial x_i}

Wenn ff in einer Umgebung eines Punktes aa partiell differenzierbar ist und alle partiellen Ableitungen stetig sind, dann ist ff in aa auch differenzierbar.

Gradient

Differentialoperator: \nabla (grad, Vektoranalysis)

In kartesischen Koordinaten sind die Komponenten des Gradientvektors die partiellen Ableitungen im Punkt P, der Gradient zeigt deshalb in die Richtung der größten Änderung. Der Betrag des Gradienten gibt den Wert der größten Änderungsrate an diesem Punkt an. (https://www.wikiwand.com/de/Gradient_(Mathematik))

(https://www.wikiwand.com/en/Differential_operator)

Wichtige Sätze

Mittelwertsatz:

Integrierbarkeit

Literatur

  • Wolfgang Beekmann: Skript Analysis (1144), FernUniversität Hagen.
  • Daniel Grieser: Skript zu Analysis II, Universität Oldenburg.
  • Klaus Jänich: Mathematik 1+2.
  • Terrence Tao: Analysis II.